Search results

1 – 10 of over 30000
Article
Publication date: 30 September 2014

Yanan Zhang

– The purpose of this paper mainly is to examine the relevant rules concerning documentary letter of credit (L/C) fraud under criminal law in England and China.

Abstract

Purpose

The purpose of this paper mainly is to examine the relevant rules concerning documentary letter of credit (L/C) fraud under criminal law in England and China.

Design/methodology/approach

The paper analyses the regulations about such crime and relevant literature.

Findings

The similarities and differences of such rules have been identified briefly. L/C fraud is considered a conduct crime; and unspecific or vague provisions concerning this crime may cause difficulties of application in judicial practice in both England and China. But the possible punishment for L/C fraud criminals under Chinese criminal law seems more severe than that under English law. Dealing with L/C fraud in international trade under national criminal laws is not effective. Regional and international efforts on legal assistance in cross-border criminal cases still remain to be improved.

Research limitations/implications

The limitation is that it examines merely relevant substantial rules in legislation. This opens the paths to future research on the approach towards L/C fraud demonstrated in court cases in England and in China.

Social implications

The research underlies the need to take serious attitude and make more effective efforts towards cross-border criminal cases, although different countries may have different rules concerning specific economic crimes.

Originality/value

This paper fills the gap of a comparative study on how L/C is regulated under criminal law regime in England and China.

Details

Journal of Financial Crime, vol. 21 no. 4
Type: Research Article
ISSN: 1359-0790

Keywords

Article
Publication date: 1 January 2024

Xianguang Sun

The purpose of this study is to establish a thermal contact conductance model of rough surfaces with inclination based on three-dimensional fractal theory.

Abstract

Purpose

The purpose of this study is to establish a thermal contact conductance model of rough surfaces with inclination based on three-dimensional fractal theory.

Design/methodology/approach

The effects of contact load, inclination angle, fractal dimensional and fractal roughness on thermal contact conductance of rough surfaces were studied using numerical simulation.

Findings

The results show that the thermal contact conductance of the rough surface increases with the increase of contact load and fractal dimension and decreases with the increase of fractal roughness and inclination angle. The inclination angle of the rough surface has an important influence on the thermal contact conductance of the rough, and it is a factor that cannot be ignored in the study of the thermal contact conductance of rough surfaces.

Originality/value

A thermal contact conductance model of rough surfaces with inclination based on three-dimensional fractal theory was established in this study. The achievements of this study provide some theoretical basis for the investigation of the thermal contact conductance of rough surfaces.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Abstract

Details

Positive Psychology for Healthcare Professionals: A Toolkit for Improving Wellbeing
Type: Book
ISBN: 978-1-80455-957-4

Article
Publication date: 8 August 2023

Xianguang Sun

The purpose of this study is to propose a fractal model of thermal contact conductance (TCC) of rough surfaces considering substrate deformation. Three deformation modes of the…

Abstract

Purpose

The purpose of this study is to propose a fractal model of thermal contact conductance (TCC) of rough surfaces considering substrate deformation. Three deformation modes of the asperity of the rough surface are considered, including elastic deformation, elastic–plastic deformation and full plastic deformation.

Design/methodology/approach

The influences of contact load, fractal dimension and fractal roughness on the TCC of the rough surface were studied.

Findings

The results show that the TCC of the rough surface increases with the increase of contact load. When D > 2.5, the larger the fractal dimension, the higher the increased rate of the TCC of the rough surface with the increase of contact load. The TCC of the rough surface increases with the increase of fractal dimension and decreases with the increase of fractal roughness. The TCC of the rough surface can be achieved by selecting a contact surface with roughness.

Originality/value

A fractal model of TCC of rough surfaces considering substrate deformation was established in this study. The achievements of this study provide some theoretical basis for the investigation of TCC of rough surfaces.

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 December 2023

Zhirui Zhao, Lina Hao, Guanghong Tao, Hongjun Liu and Lihua Shen

This study discusses the tracking trajectory issue of the exoskeleton under the bounded disturbance and designs an useful tracking trajectory control method to solve it. By using…

129

Abstract

Purpose

This study discusses the tracking trajectory issue of the exoskeleton under the bounded disturbance and designs an useful tracking trajectory control method to solve it. By using the proposed control method, the tracking error can be successfully convergence to the assigned boundary. Meanwhile, the chattering effect caused by the actuators is already reduced, and the tracking performance of the pneumatic artificial muscles (PAMs) elbow exoskeleton is improved effectively.

Design/methodology/approach

A prescribed performance sliding mode control method was developed in this study to fulfill the joint position tracking trajectory task on the elbow exoskeleton driven by two PAMs. In terms of the control structure, a dynamic model was built by conforming to the adaptive law to compensate for the time variety and uncertainty exhibited by the system. Subsequently, a super-twisting algorithm-based second-order sliding mode control method was subjected to the exoskeleton under the boundedness of external disturbance. Moreover, the prescribed performance control method exhibits a smooth prescribed function with an error transformation function to ensure the tracking error can be finally convergent to the pre-designed requirement.

Findings

From the theoretical perspective, the stability of the control method was verified through Lyapunov synthesis. On that basis, the tracking performance of the proposed control method was confirmed through the simulation and the manikin model experiment.

Originality/value

As revealed by the results of this study, the proposed control method sufficiently applies to the PAMs elbow exoskeleton for tracking trajectory, which means it has potential application in the actual robot-assisted passive rehabilitation tasks.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 June 2023

Xianguang Sun and Xicheng Xin

The purpose of this study is to establish a fractal model of thermal contact conductance (TCC) of micro-segment gear considering friction coefficient.

Abstract

Purpose

The purpose of this study is to establish a fractal model of thermal contact conductance (TCC) of micro-segment gear considering friction coefficient.

Design/methodology/approach

The influences of friction coefficient, fractal dimension, fractal roughness and contact type on the TCC of the rough surface were studied by using numerical simulation.

Findings

The results show that with the increase of the friction coefficient, the TCC of the rough surface will decrease. As the fractal dimension increases or the fractal roughness decreases, the rough surface becomes smoother and the TCC becomes larger. Under the same load conditions, the TCC of the internal contact type is greater than that of the external contact type. In engineering practice, the desired TCC can be achieved by changing the contact type.

Originality/value

A fractal model of TCC of micro-segment gear considering friction coefficient was established in this study. The achievements of this study provide some theoretical basis for the investigation of the TCC of the gear.

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 October 2021

Shaoyong Xu, Vanliem Nguyen, Xiaoyan Guo and Huan Yuan

This paper aims to propose an optimal design of the partial textures in the mixed lubrication regime of the crankpin bearing (CB) to maximize the CB's lubrication efficiency.

Abstract

Purpose

This paper aims to propose an optimal design of the partial textures in the mixed lubrication regime of the crankpin bearing (CB) to maximize the CB's lubrication efficiency.

Design/methodology/approach

Based on a hybrid model between the slider-crank-mechanism dynamic and CB lubrication, the square-cylindrical textures (SCT) of partial textures designed on the CB’s mixed lubrication regime are researched. The effect of the density distributions of partial textures on CB’s lubrication efficiency is then evaluated via two indices of increasing the oil film pressure (p) and decreasing the frictional force (Ff) of the CB. The SCT’s geometrical dimensions are then optimized by the genetic algorithm to further improve the CB’s lubrication efficiency.

Findings

The results show that the SCT of partial textures optimized by the genetic algorithm has an obvious effect on enhancing CB’s lubrication efficiency. Especially, with the CB using the optimal SCT of partial textures (4 × 6), the maximum p is significantly increased by 3.7% and 8.2%, concurrently, the maximum Ff is evidently reduced by 9.5% and 21.6% in comparison with the SCT of partial textures (4 × 6) without optimization and the SCT of full textures (12 × 6) designed throughout the CB’s bearing surface, respectively.

Originality/value

The application of the optimal SCT of partial textures on the bearing surface not only is simple for the design-manufacturing process and maximizes CB’s lubrication efficiency but also can reduce the machining time, save cost and ensure the durability of the bearing compared to use the full textures designed throughout the CB’s bearing surface.

Details

Industrial Lubrication and Tribology, vol. 73 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 December 2023

Xianguang Sun and Xicheng Xin

The purpose of this study is to propose a fractal model of thermal contact conductance of rough surfaces based on axisymmetric cosinusoidal asperity.

Abstract

Purpose

The purpose of this study is to propose a fractal model of thermal contact conductance of rough surfaces based on axisymmetric cosinusoidal asperity.

Design/methodology/approach

The effects of contact load, fractal dimension, fractal roughness and friction coefficient on the thermal contact conductance of rough surfaces were investigated in this study.

Findings

The findings suggest that as the contact load increases, the thermal contact conductance of rough surfaces also increases. In addition, an increase in the fractal dimension corresponds to an increase in the thermal contact conductance. Conversely, an increase in fractal roughness leads to a decrease in thermal contact conductance. The smaller the friction coefficient, the lower the thermal contact conductance of the rough surface. In practical engineering applications, it is possible to achieve the desired thermal contact conductance of rough surfaces by selecting surfaces with appropriate roughness.

Originality/value

A fractal model of thermal contact conductance of rough surfaces based on axisymmetric cosinusoidal asperity was established in this study. The findings of this study offer a theoretical foundation for investigating the thermal contact conductance of rough surfaces.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 November 2023

Hao Xiang

It is of a great significance for the health monitoring of a liquid rocket engine to build an accurate and reliable fault prediction model. The thrust of a liquid rocket engine is…

Abstract

Purpose

It is of a great significance for the health monitoring of a liquid rocket engine to build an accurate and reliable fault prediction model. The thrust of a liquid rocket engine is an important indicator for its health monitoring. By predicting the changing value of the thrust, it can be judged whether the engine will fail at a certain time. However, the thrust is affected by various factors, and it is difficult to establish an accurate mathematical model. Thus, this study uses a mixture non-parametric regression prediction model to establish the model of the thrust for the health monitoring of a liquid rocket engine.

Design/methodology/approach

This study analyzes the characteristics of the least squares support vector regression (LS-SVR) machine . LS-SVR is suitable to model on the small samples and high dimensional data, but the performance of LS-SVR is greatly affected by its key parameters. Thus, this study implements the advanced intelligent algorithm, the real double-chain coding target gradient quantum genetic algorithm (DCQGA), to optimize these parameters, and the regression prediction model LSSVRDCQGA is proposed. Then the proposed model is used to model the thrust of a liquid rocket engine.

Findings

The simulation results show that: the average relative error (ARE) on the test samples is 0.37% when using LS-SVR, but it is 0.3186% when using LSSVRDCQGA on the same samples.

Practical implications

The proposed model of LSSVRDCQGA in this study is effective to the fault prediction on the small sample and multidimensional data, and has a certain promotion.

Originality/value

The original contribution of this study is to establish a mixture non-parametric regression prediction model of LSSVRDCQGA and properly resolve the problem of the health monitoring of a liquid rocket engine along with modeling the thrust of the engine by using LSSVRDCQGA.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 19 April 2023

Xianguang Sun and Wuce Xing

The purpose of this study is to present a fractal model of thermal contact conductance of rough surfaces based on elliptical asperity.

Abstract

Purpose

The purpose of this study is to present a fractal model of thermal contact conductance of rough surfaces based on elliptical asperity.

Design/methodology/approach

The effects of contact load, fractal dimensional, fractal roughness and eccentricity on thermal contact conductance of rough surfaces were investigated by using numerical simulation.

Findings

The results indicate that the thermal contact conductance of rough surfaces increases with the increase of the contact load, increases with the increase of the fractal dimension and decreases with the increase of the fractal roughness. The thermal contact conductance of rough surfaces increases with the increase of eccentricity. The shape of the asperity of rough surfaces has an important influence on the thermal contact conductance of rough surfaces.

Originality/value

A fractal model of thermal contact conductance of rough surfaces based on elliptical asperity was established in this study. The achievements of this study provide some theoretical basis for the investigation of thermal contact conductance of bolted joint surfaces.

Details

Industrial Lubrication and Tribology, vol. 75 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 30000